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Monte Carlo simulation of hopping conduction in
two-dimensional Coulomb glasses

J Ruiz, M Ortufio, E Cuevas and V Gasparian

Departamento de Fisica, Universidad de Murcia, Spain
Received 6 July 1994, in final form 21 October 1994

Abstract. We have carried out ¢ Monte Carlo simulation of the conductivity of a two-
dimensional strongly localized interacting system. A plot of dlogofdlogT versus T, on a
double logarithmic scale, clearly shows two distinct regimes, one activated at high T and a
non-activated one at fow . The conductivity exponent in this later regime is close to % in
agreement with Efros and Shklovskii's predictions, although the characteristic temperature T is
about a factor of two smaller than predicted.

1. Intreduction

Thermally assisted hopping between localized states is thought to be the dominant transport
mechanism in strongly disordered systems. At relatively high temperatures the spatial
(tunnelling) factor is most important in determining transition rates. Conduction then
proceeds mainly by short one-electron jumps: as the temperature is decreased the electrons
prefer to jump longer and longer distances in order to find states closer in energy.
Such behaviour, called variable-range hopping (VRH), results in a temperature dependent
activation energy. At even lower temperatures, the conductivity should be dominated by
many-electron jumps that avoid the Coulomb gap and have very low excitation energies
(Pollak and Ortufio 1985).

It is commonly believed that in the presence of interactions the conductivity in the VRH
regime obeys Efros and Shklovskii’s law:

o ocexp{—(Tg/ TV} (1)

with the exponent ]§ independent of the dimensionality of the system (Shklovskii and Efros
1984). This type of behaviour has been observed in many experimental works, some of
them on two-dimensional systems {(Bishop et al 1980, Liu et al 1992, Lee et af 1992).
As the temperature becomes of the order of the Coulomb gap energy, this gap should be
washed ont and the conductivity should follow Mott’s VRH law (Mott 1968):

o o exp{—(To/ 7)1} (2)

where d is the dimensionality of the system.

Recent experiments have shown a re-entrance io activated behaviour at very low
temperatures, which sometimes is suppressed by a magnetic field (Terry et af 1992, Dai et
al 1992), and sometimes is not (Kim and Lee 1993). This has been interpreted as due to
the existence of a hard gap, of both magnetic and non-magnetic origin, in the smgle~partlcle
density of states close to the Fermi level.
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We have performed a Monte Carlo computer simulation of the conductivity of a two-
dimensional interacting and strongly localized system. The only previous simulation of this
problem was done by Levin et @l (1987) within the R model approximation, that we can
now avoid due to the drastic increase in computer power. Our results show an activated
regime at high temperatures and only one non-activated regime at low temperatures with
an exponent close to 1. as predicted by Shklovskii and Efros (1984).

In section 2 we present the model and the numerical algorithm employed to simulate
conductivity. In section 3 we show the numerical results. We finally discuss the results and
extract some conclusions.

2. Model and simulation algorithm

The model is based on a classical Hamiltonian which includes a diagonal disorder energy and
an electron—-electron 1/r Coulomb interaction. The sites are arranged in a two-dimensional
square lattice, with the number of electrons equal to half the number of sites. The Hubbard
energy is assumed to be much larger than the other relevant energies, so no more than one
electron can occupy a site. The disorder energy is a random variable uniformly distributed
in the interval (~W, W). We first throw the electrons at random and obtain a pseudo-ground
state by stabilizing the systemn against all possible one-electron transitions (Baranovskii et
al 1979). Afterwards, we thermalize the system to a given temperature by means of the
Metropolis algorithm, as described by Davies et al (1984).

To simulate electric conduction, we have extended the previous algorithm for
thermalization. Specifically, we reduce the jumping probability by the factor exp {—2r;;/a}
to simulate correctly the transition rates, and we incorporate the electric field F by adding
the energy eFX;; to the site energy. In the above, ¢ is the electronic charge and a the
localization radius. The electric field is applied along the x direction; X;; is equal to x; — x;
if the electron does not cross the initial edge of the square perpendicular to the x axis, and
otherwise (Levin ef a/ 1987)

- xj—x+ L if x; < x;
Xy =

y—x—L  ifx <.

3

The conductivity is proportional to the difference between the number of electrons which
cross the original edge of the sample in and against the direction of the field (x; < x; and
X, < x;, respectively).

‘We used 10 different samples of size 60x60. For each temperature and each sample, we
attempted a total number of jumps ranging between 5 x 107 and 1.3 x 10°. We use several
localization radii and a disorder energy W = 2, in units of the Coulomb energy e%/{r}, {r)
being the lattice constant. The electric field was chosen as F{r) = k7/10, small enough
to be within the linear regime (k is the Boltzmann constant). The difference between the
numbers of jumps with and against F is about 10% of the sum of the two. We also tested
that the electric current had reached a stationary state.

3. Numerical results

We calculated the temperature dependence of the conductivity in the range 0.04 £ T < 0.6,
as a function of the localization radius. We assumed a functional dependence of the
conductivity of the form

o (1) & T™ exp{~(To/ T)"} 4
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and plotted w(T} = dlogo/dlogT versus T to determine the exponent x. For m small
compared to x(Ty/T)*, the previous form of o implies that log w(T) against logT is a
straight line, whose slope is equal to the exponent x.

To analyse the importance of sample to sample fluctuations, we have obtained the
average of the conductance, of the resistance and of the logarithm of the conductance for
each temperature. 'We have checked that the average conductance always differs by less
than 1% from the inverse of the average resistance. Thus, we conclude that fluctuations are
not relevant in the two-dimensional hopping regime considered.

wr
]

d logo/d logT

1.0

Figure 1. dlogeo/dlog T as a function of T, on a double logarithmic scale, for a disorder energy
W = 2 and a localization radius a = 3.

In figure 1 we represent w(7T') as a function of T, on a double logarithmic scale, for a
localization radius @ = 3. Two straight lines are visible, with slopes equal to 0.48 & 0.05
and 0.97£0.08, approximately corresponding to Efros and Shklovskii’s law and to activated
behaviour, respectively. The transition temperature between both regimes is 7o = 0.18. We
have to note that any procedure to determine the conductivity exponent is necessarily very
sensitive and generates big error bars in the exponent x.

Figure 2 shows logo as a function of 7-!/2 for a localization radius @ = 3. The
low-T data are fitted quite well by a straight line which extends for almost two orders of
magnitude of the conductivity. The slope of the straight line corresponds to a characteristic
temperature kT = 2.37. The inset in figure 2 represents logo as a function of T™! in the
high-temperature regime. The conductivity follows an Arrhenius behaviour in this regime,
with an activation energy equal to 0.31.

We have done an analysis, similar to the one shown for @ = 3, for @ = 2, 2.5 and 4.
The main features are similar to the case @ = 3, and the characteristic parameters are given
in table 1. We can notice that in the non-activated regime, we always get an exponent close
to % The activated regime has already been studied in a previous publication (Poilak et af
1994), We obtained that the activation energy is proportional to the Conlomb gap and does
not depend on the localization radius.

We have not found any sign of a re-entrance to activated behaviour at very low
temperatures. The temperatures considered are probably a little bit too high for this new
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Figure 2. logo as a function of T-V2 for W = 2 and @ = 3. The inset represents loga against
7=! for the h1gh-temperature regime of the main curve.

Table 1, Characteristic parameters for the vRH regime. « is the localization radivs, x the
conductivity exponent entering equation (4), 7] the characteristic temperature gbtained fitting
the simulations of the conductivity to equation (1), Tgs the theoretical prediction of the Efros and
Shklovskii temperature, equation (5), and fc the crossover temperature between the activated
and VRH g'egim@s.

a x ¥  Ts T
2 058 235 325 018
25 052 246 260 0.6

3 048 237 217 0.8

4

053 262 163 018

regime to he observed But we also belleve that we could never obtain this reglme with

not to & hard gap in the density of states.

4, Discussion

The theoretical predlctlon Tgs for the characteristic temperature 7 appearing in Efros and
Shklovskii's law is given by (Shklovsku and Efros 1984)

s = £ )

where 8 is a numerical factor of the order of six, and « is the effective dielectric constant.
In real experiments, & (as well as the density of states in the Coulomb gap) depends on the
lgcalization radius, but for the interpretation of our simulations we have to consider « = 1.
In table 1, we show the values of Tgs obtained with equation (5) and 8 = 6.5 (Nguyen
1984).
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We can notice that both the numerical fittings 7, and the theoretic;al predigtions TES

predtctlons a,re mversely proportlonal to the locallzatlon radms, a‘ whlle thc numencal
fittings are mdeper;dent of g. This is s0 because our simulations de not correspond te
the classical Coulomb gap regime characterized by a localization radius smaller than the
intersite separation and where expression (5) is valid, If we extrapolate our results to g = 1,
where the classical regime starts, we would obtain the estimate 8 = 2.4, less than half qf
Efros and Shklovskii’s predictions. In the Arhenivs regime, the activation energy is also
independent of the localization radius and propertional to the Coulomb gap (Pellak ef al
1994),
Efros and Shkiovsku s modcl for VRH Fﬂl‘ exampie, we cannot obtaln dtrect e.wdenca fqr
the importance of successive correlations (the only ones involved in our simulations smce
we do not consider many-electron jumps). We cannot conclude whether the exponent of 1 3
is a result of the linear (in two dimensions) single-particle density of states or whether it it
due to (sequential) correlation effects,

We believe that in order to see a second non-activated regime, corresponding to the
se-called Mott VRH, we would have to consider less strongly localized systems, closer to
the insulator-metal trangition, as is the case in most experimental situations where one sges
a crogsover, Close to the transition the jumps are longer, the screening is bigger and it
is much easier to overcome the Coulomb gap effects. The transition temperature to the
activated rcglme ig T ~ Q,18, while the expected grossover temperature to Mott VRH is

equal, in two dimensions, to

3

T
Té:——:}/% (&)
iM

where Ty is Mott’s characteristic temperature, and y is equal to 729/4096 if we use
the typical hopping distance as the relevant magnitude for the crossover. Then, the
critical temperature ranges between 0.2 and 3, but the activated behaviour sets in at lower
to mcludc a hrgh d1e!ectnc cengtant in the mtcractlon energy to be able tq observe Mott s
behaviour, but then it would be difficult to obtain Efros and Shklovskii’s law for the same
sample.

We can observe in table 1 that the transition temperatusre between the activated and VRH
regimes is roughly independent of @ and approximately equal to 0.18. We can explain this
result by considering that the VRH regime enly holds when the typical hopping distance is
larger than the localization radius. This condition is satisfied for T < 7,/16 ~ 0,13, in
good agreement with our numerical simulations.

5. Conclusions

We have found a conductmty exponent in VRH in 1ntgractmg systems close o 2, in
agreement with Efros and Shklovskii’s predictions. The values of the characteristic
temperature Ty are independent of the localization radius, in disagreement with these

prcdlctmns whlch aonly apply to the classical Coulomb gap regime, Extrapolating our
results to this regime would produce a constant 8 of the order of 2.5, abeut half the value

predicted by Efros and Shklovskii. The value of 7y is of importance in the interpretation
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of conductivity experiments and in the variable-range hopping regime in the quantum Hall
effect.

We are now extending our calculations to lower temperatures, which has to be done with
a completely different approach based on percolation between many-electron configurations.
This approach will also allow us to analyse the importance of correlations, since we will
be able to identify the critical jumps in each percolation path. Nevertheless, the percolation
approach only works at very low temperatures and for the temperature range considered
here the Monte Carlo technique is more appropriate.
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