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Abstract. two- 
dimensional strongly localized interacting system. A plot of dlogo/dlogT versus T, on a 
double logarithmic scale, clearly shows two distinct regimes, one activated at high T and a 
nowactivated one at low T. The conductivity exponent in this later regime is close to i, in 
agreement with Efros and Shklovskii‘s predictions. although the characteristic temperature Ti is 
about a factor of two smaller than predicted. 

We have carried out a Monte Carlo simulation of the conductivity of 

1. Introduction 

Thermally assisted hopping between localized states is thought to be the dominant transport 
mechanism in strongly disordered systems. At relatively high temperatures the spatial 
(tunnelling) factor is most important in determining transition rates. Conduction then 
proceeds mainly by short one-electron jumps: as the temperature is decreased the electrons 
prefer to jump longer and longer distances in order to find states closer in energy. 
Such behaviour, called variable-range hopping (VRH), results in a temperamre dependent 
activation energy. At even lower temperatures, the conductivity should be dominated by 
many-electron jumps that avoid the Coulomb gap and have very low excitation energies 
(Pollak and Ortuiio 1985). 

It is commonly believed that in the presence of interactions the conductivity in the VRH 
regime obeys Efros and Shklovskii’s law: 

U cx ~ X ~ ( - ( T ~ / T ) ” ~ }  (1) 

with the exponent independent of the dimensionality of the system (Shklovskii and Efros 
1984). This type of behaviour has been observed in many experimental works, some of 
them on two-dimensional systems (Bishop er a1 1980, Liu ef al 1992, Lee et al 1992). 
As the temperature becomes of the order of the Coulomb gap energy, this gap should be 
washed out and the conductivity should follow Mott’s VRH law (Mott 1968): 

(2) I/(l+d) ] a cx exp{-(To/T) 

where d is the dimensionality of the system. 
Recent experiments have shown a re-entrance to activated behaviour at very low 

temperatures, which sometimes is suppressed by a magnetic field (Terry et a1 1992, Dai et 
al 1992), and sometimes is not (Kim and Lee 1993). This has been interpreted as due to 
the existence of a hard gap, of both magnetic and non-magnetic origin, in the single-particle 
density of states close to the Fermi level. 
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We have performed a Monte Carlo computer simulation of the conductivity of a two- 
dimensional interacting and strongly localized system. The only previous simulation of this 
problem was done by Levin et a1 (1987) within the R model approximation, that we can 
now avoid due to the drastic increase. in computer power. Our results show an activated 
regime at high temperatures and only one non-activated regime at low temperatures with 
an exponent close to f .  as predicted by Shklovskii and Efros (1984). 

In section 2 we present the model and the numerical algorithm employed to simulate 
conductivity. In section 3 we show the numerical results. We finally discuss the results and 
extract some conclusions. 

2. Model and simulation algorithm 

The model is based on a classical Hamiltonian which includes a,diagonal disorder energy and 
an electron-electron l / r  Coulomb interaction. The sites are arranged in a two-dimensional 
square lattice, with the number of electrons equal to half the number of sites. The Hubbard 
energy is assumed to be much larger than the other relevant energies, so no more than one 
electron can occupy a site. The disorder energy is a random variable uniformly distributed 
in the interval (-W. W ) .  We first throw the electrons at random and obtain a pseudo-ground 
state by stabilizing the system against all possible one-electron transitions (Baranovskii et 
a[ 1979). Afterwards, we thermalize the system to a given temperature by means of the 
Metropolis algorithm, as described by Davies et al (1984). 

To simulate electric conduction, we have extended the previous algorithm for 
thermalization. Specifically. we reduce the jumping probability by the factor exp {-2rij/a] 
to simulate correctly the transition rates, and we incorporate the electric field F by adding 
the energy e F i j j  to the site energy. In the above, e is the electronic charge and a the 
localization radius. The electric field is applied along the x direction; iij is equal to xj - x i  
if the electron does not cross the initial edge of the square perpendicular to the x axis, and 
otherwise (Levin et  al 1987) 

if xj c xi 
(3) if xi e x,. 

The Conductivity is proportional to the difference between the number of electrons which 
cross the original edge of the sample ~~ in and against the direction of the field (XI c xi and 
x, c x j ,  respectively). 

We used 10 different samples of size 60x60. For each temperature and each sample, we 
attempted a total number of jumps ranging between 5 x lo7 and 1.3 x lo9. We use several 
localization radii and a disorder energy W = 2, in units of the Coulomb energy e * / ( r ) ,  ( r )  
being the lattice constant. The electric field was chosen as F(r) = kT/10, small enough 
to be within the linear regime ( k  is the Boltzmann constant). The difference between the 
numbers of jumps with and against F is about 10% of the sum of the two. We also tested 
that the electric current had reached a stationary state. 

x j  - x i  + L 
I J - {  x j  - x i  - L 

:.- 

3. Numerical results 

We calculated the temperature dependence of the conductivity in the range 0.04 < T < 0.6, 
as a function of the localization radius. We assumed a functional dependence of the 
conductivity of the form 

u ( T )  a T ' " ~ X ~ [ - ( T ~ / T ) ~ ]  (4) 
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and plotted w(T) = dloga/dlogT versus T to determine the exponent x .  For m small 
compared to x(To/T)X, the previous form of a implies that logw(T) against logT is a 
straight line, whose slope is equal to the exponent x .  

To analyse the importance of sample to sample fluctuations, we have obtained the 
average of the conductance, of the resistance and of the logarithm of the conductance for 
each temperature.  we have checked that the average conductance always differs by less 
than 1% from the inverse of the average resistance. Thus, we conclude that fluctuations are 
not relevant in the two-dimensional hopping regime considered. 

6 8 0.10 2 
L.” 

T 
Figure 1. d logn/d Ibg T as a function of T.  on a double logarithmic seal% for a disorder energy 
W = 2 and B localization d i u s  d = 3. 

In figure 1 we represent w(T) as a function of T ,  on a double logarithmic scale, for a 
localization radius a = 3. Two straight lines are visible, with slopes equal to 0.48 f 0.05 
and 0.97i0.08, approximately corresponding to Efros and Shklovskii’s law and to activated 
behaviour, respectively. The transition temperature between both regimes is T, = 0.18. We 
have to note that any procedure to determine the conductivity exponent is necessarily very 
sensitive and generates big error bars in the exponent x .  

Figure 2 shows loga as a function of T-’/’ for a localization radius a = 3. The 
low-T data are fitted quite well by a straight line which extends for almost two orders of 
magnitude of the Conductivity. The slope of the straight line corresponds to a characteristic 
temperature kTd = 2.37. The inset in figure 2 represents loga as a function of T-]  in the 
high-temperature regime. The conductivity follows an Arrhenius behaviour in this regime, 
with an activation energy equal to 0.31. 

We have done an analysis, similar to the one shown for U = 3, for a = 2, 2.5 and 4. 
The main features are similar to the case a = 3. and the characteristic parameters are given 
in table 1. We can notice that in the non-activated regime, we always get an exponent close 
to i. The activated regime has already been studied in a previous publication (Pollak et a1 
1994). We obtained that the activation energy is proportional to the Coulomb gap and does 
not depend on the localization radius. 

We have not found any sign of a re-entrance to activated behaviour at very low 
temperatures. The temperatures considered are probably a little bit too high for this new 
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F&Ue 2. lopn as a function sf T-"' for W = 2 and n E 3. The inset represents logo against 
7" for the high-temperature regime of the main ewe. 

Tab!e 1. ChanNeristic parnmetes for the VRH regime. U is the lscaliytion radius, x the 
wnduciivity exponent entering equation (4). T,; the ch?racterisfic temperature qbtained fitting 
the simulntionsofthe condugtjvity toequation (I), TES the theoretical predictionof *e Efros and 
Shklovskii tpmperature, equation (5). and IC the wmsover temperature between the aotivnted 
and VRH regimes. 
. ... ~ . . . . ~ ~ ~  
n 5  4; TES Tc 
2 0.58 2.35 3.25 0.18 

~~ ~~ 

2:5 4.52 2.46 2.60 0.16 
3 0,48 2.37 2,!7 0.!8 

regime to be obeyad.  But we also believe &at we could never obtain this regime with 
only one-e!ec?ron jumps, since this behaviour should be due to many-elewon jumps and 
notto a hard gap in the density of states. 

4 9  Disn?ss!on 

The theoretical prediction TES for the characteristic temperature Td appearing in Efros and 
Shklovskii's law is given by (Shklovgkii and Efros 1984) 

where p is a numerical factor of the order of six, and K is fie effective dielectric constant. 
In real experiments, K (as we11 as the density of states in the Coulomb gap) depends on the 
lqcaligtion radius, but for the interpretation- of our simulations we have to consider K = 1. 
In table 1, we show the values 0f.T- obtained with equation (5)  and ,9 = 6:s (Nguyen 
1984). 
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We can notice that both the ngmerisa! fittings TA and the theoretical predictions TEs 
for the characteristic temperature aye of the same order of magnitude, but the theoretical 
predictions are inverse!y proportional to the localization radius a, whi!e the numerical 
fittings are independent or 9, This is so because our simulations dg not pqrreSpmd to 
the classical Coulomb gap regime characterized by a !~ca!ization radius smaller than the 
in!ersitG separation and where expression (5) is valid, !f we extrapolate our results to a = 1, 
whers the classical regime starts, we would obtain the estimate B G 2.4, less than half of 
Bfros and Shklovskii's prediqtions. In the Arrhenius regime, the activation energy is a!so 
independent of ihe !oca!ization radius and proportional to the Coulomb gap (Pol!& at a1 
!98?), 

Our Monte Car!e procedure is not very suitable to analyse the assumption underlying 
Efros and Shk!ovskii's model for VRH: For wample, we cannot obtain direet evideeace f& 
the importance qf successive correlations (the pnly ones involved in our simulations since 
we do not conside!: many=e!ectron jumps). 

3 is a result of the linear (in two dimensiqns) singIe.particle density of states or whether it Is 
due to (sequential) corrcilatian effects, 

We believe that in order t~ see a secsnd non=activate,d regime, corresponding ta the 
swalled M ~ t t  VRH, we would haue to considcz less strongly localized systemg, closer to 
the insr?!ator-metc?! transiti@!b % is the =se in most %xpe?imenta! situations where one sea  
a crossover, Close to the transition the jumps are longex, the screening is bigger and it 
is much easier to overcome the Cou!omb gap effects; The transition tempe&re to the 
activatsd regime is Tc % 4,!8, whi!e the expected 4rQsSover temperature to Mott VRH is 
qua!, in two dimensions, to 

cannet conclude whether the exponent of 

whers TM is Mott's charactmistis temperature, and y is equal to 7W4096 if we use 
ing distance as the re!evant magnitude for the cros~ovm, Then, the, 

critical temperature ranges between 0.2 and 3, but the activated behaviour sets in at lower 

to include a high dielectric c~nstant in the interaction energy tg be able tq observe Mott's 
behaviour, hut then it would he difficult to obtain Efros and.Shk!ovskil's law for the same 

We can observe in table 1 that the transition temperature between the activated and VRH 
regimes i s  roughly independent of a ad appreximately equal to Q,l& We can explain this 
rqsult by considering that the regime only hplds when the typical, hopping distance is 
larger than the !aca!ization radius, This condition is satisfied f i r  T < T ~ / I G  R O ~ I ~ ,  in 
good agreement with our numerical simulations. 

te!Ppe?atUreS. 4Ur system is tQQ int%r%thg for MOtt VRH to be Qbservd, We wCzUld have 

sample, 

5. conclusions 

We have found a conductivity exponent in VRH in interacting systems close to 4% in 
agreement with Efros and Shklqvskii's predictions. The values of the chacacteristic 
tempexature T,l q e  independent of the !ocalization radius, in disagreement with these 
prdictions, whiqh on!y apply to the classical C~ulomb gap regime: Extrapolating eur 
results to this regime would produse a constant @ of the order of 2.5, about half the valug 
predicted by Efros and Shklavskii. me value of Ti is of importance in the interpretation 



of conductivity experiments and in the variable-range hopping regime in the quantum Hall 
effect. 

We are now extending our calculations to lower temperatures, which has to be done with 
a completely different approach based on percolation between many-electron configurations. 
This approach will also allow us to analyse the importance of correlations, since we will 
be able to identify the critical jumps in each percolation path. Nevertheless, the percolation 
approach only works at very low temperatures and for the temperature range considered 
here the Monte Carlo technique is more appropriate. 
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